NL

F/G 1273

-8687-001

IFIED

JNCLAZZ

e

S ————
——

EERE

EEF

[TPEEEE

[l

ML2s fiis mie

MICROCOPY RESOLUTION TEST CHART

MK Fiir [0y

COGNITION
AND
COMPUTING
LABORATORY

eport No. - -

AN EMPIRICAL STUDY OF PLAN-BASED REPRESENTATIONS
OF PASCAL AND FORTRAN CODE

AD-A183 797

Scott P. Robertson
Chiung-Chen Yu

Department of Psychology
Ruztgers University
Busch Campus
New Brunswick, NJ 08903

June 1987

Sponsored by: T O)
ponsore y » o 3' o
Perceptual Science Programs e A

(Code 1142PS) ISR OR
Office of Naval Research oLy 437,‘
Contract No. N00014-86-K-0876 , P
Work Unit No. NR 4424203-01 Uy

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
REPRODUCTION IN WHOLE OR IN PART IS PERMITTED FOR ANY
PURPOSE OF THE UNITED STATES GOVERNMENT.

Unclassified
SECUMTY TLASTFICATICN 2F Ty BAGE ‘When Date Eniered)
REPORT DOCUMENTATION PAGE azr';!.;f’c%‘:;:g%ggupso"
T 3. GOVYT ACCERISION NOJ). ARCIPIENT S CATALOG NUNMBER
CCL-0687-001
& TITPLE (and Subseie) 5. TYPE OF REPONAT & PEMOO COVERLD
An Empirical Study of Phn-Buod Technical
Representations of Pascal and Report
F c | 6. PERPORMING ONG. n.uouf NUMBER
Y. AUTHON® . CON ANT MU 0]
Soott P. Robertson N00O14-86-K
Chiung-Chen Yu -0878
mwm@—_vwwu TN TN o
Psychology Dept..Rutgers Univ.-Busch Campus [NR 4424203-01
New Brunswick, NJ 08903
1. CONTROLLING OQFFICE NAME AND ADDORESS 13. AEPORY DATR
rams June, 1987
Office of Naval Research 13, NUNMBER OF PAGES
Arll_r%\lo‘g. VA 22217 54
TR LL] NV NAME & AGORESIIIT aillerent from Contrelling Offise) | 15, SECURITY CLAGE. (o Gie repert)
Unclassifled
Wm—‘
6 OISTRIBUTION STATEMENT (of thie Repore)
Approvrd for public release; distribution untimited.
17. DISTRIBYTION STATEMENT (of the abstrect entered :1n Block 20, il ditferent from Report)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Cantinue on reverse side 1! Nnecessary and idenilly By dlesk number)
Software psychology, human computer interaction, program comprehensnon
planning.
10. ABSTRACT (Continue on reverse side I necessery and identify by Bleck number)
T~ The first step in program modification is comprehension. Several researchers
have argued recently that programmers utilize a plan-based representation when
composing or comprehending program code. in a series of studies we are testing
the psychological validity of this proposal and examining the nature of plan-based
program representations. Here we report the resuits of our first study in which
programmers segmented code and sorted programs. The segmenting datashowed - - -~
D0 , %7 1473 coimion oF 1 wov e8 13 aesoLETE Unciassified

SECUMTY CLASIMICATION OF THIS

— —

el it

Unclassified
SECUMTY CLASSIFICATION QF THIS PAGE(When Dote Entered)
~) Mpmgmmmemmconmomajofcomponmotammm and that these com-
ponents are defined by goals in a plan representation. Pascal and Fortran programs
that empioy the same pian structures were segmented into similar components.
These components were labelled with similar subgoal descriptions. The majority
of subgoals described were abstract, with few being task-specific. Program sorting
data aiso shows ciustering into plan groups, however some secondary dimensions, like
the type of data used (in Pascal programs). may also bo imponam pans of program
representation. - T = ‘ v -
S el Uy S o : ‘
(\”.
-A =sion Eq_r
Cros o enagl g ‘
i 1N TAR
cooaaced O
Lo ton |
R i ».‘.‘.)/ 77777
iciinity Cedes
i (SRS S
Sne. 1ol l\
a ‘, l
i t
s |
| I B
1 //
| N
i
i
i
!
Unclassified

SECURITY CLASBIFICATION OF Ture B QEMhan Dare
- o et - m

Introduction

How iIs computer program code conceptually represented,
and how do programmers utilize conceptual representations of
code in the task of program modification? 1In a series of
experiments, we have set out to explore these questions
using a variety of psychological methodologies. Here the
first of these experiments Is reported.

Several researchers have argued recently that
programmers utilize a plan-based representation when
composing or comprehending program code (Adelson, 1981;
Bonar & Soloway, 1985; Soloway, Bonar & Erlich, 1983;
Soloway & Erlich, 1984; Soloway, Ehrlich, Bonar & Greenspan,
1982; Ehrlich & Soloway, 1983; Rist, 1986). Soloway and his
colleagues are ét the forefront of theory in this area.
They have developed a taxonomy of programming plans and plan
types. For example, Bonar & Soloway (1985) note that novice
programmers bring "step by step knowledge®” about how to make
choices, iterate, and perform other sequential activities
from everyday 1life into the programming task. They must
then acquire “programming knowledge,” which consists not
only of the syntax and semantics of a programming language,
but also the plans, or hierarchically organized sequences of
goals and actions that achieve specific tasks.

Some empirical studies of the claim that programmers
utllize plans have appeared. Rist (1986), for example, asked
novice and expert programmers to group lines of Pascal code

that “dld the same things"™ together. Novice and expert

— —

programmers grouped lines on several crtiteria including
"global plans® like initialize, input, calculate, and
output, “task-level” plans llke sorting wallpaper costs for
a specific room or calculating the tax for a particular

item, and “syntax®, 1like assignment statements or loop

control statements. Interestingly, novices grouped many more
lines based on syntax while experts grouped lines based on
function.

In this experiment, we explored the way in which expert
programmers chunk code by looking at several different
programs, including programs in different languages, that
utilize the same plans. Previous researchers have tended to
focus on plans in {individual programs, assuming that the
abstract plans are transferable across programs. Also,
previous research has almost exclusively dealt with a single
language, usually Pascal. If we truly believe that plans
are abstract Kknowledge structures that programmers utilize
when they write or read code, then we should be able to
{ demonstrate their common properties across programs and
1 across languages.

Plans are knowledge structures that qrganize steps In a
procedure into chunks. Each chunk achives a subgoal in the
goal hlerarchy of a particular task. Program plans organize
sections of code into chunks. Task-level plans consist of
subgoals that are specifled In the task language, to "get an
address from a buyer’s list® for example. General plans, on

the other hand, consist of subgoals that are abstractions

— e ——

from a specific task, and may in fact apply in several
contexts, “"lterate 1In a 1loop" for example. Programs that
perform different tasks but use the same general plans
should be chunked the same way. To examine this claim, we
asked programmers to segment code from Pascal and Fortran
prograas and to sort the programs into groups. Within each
language group, there were subgroups of programs that
utilized the same general plans. .A major goal of our
initial study was to demonstrate that plan subgroups are
recognizable to programmers by showing that programs sharing
a plan would be sorted together and by showing that programs
sharing a plan would be segmented and described the same
way.

A programming language is wusually designed to support
general plans. Thus, languages contain “loop constructs"®
but do not contain "compare phone lists" constructs. To the
extent that general program plans are abstract from
specific tasks, programs that are written in different
languages but that wutilize the same plan should be
recognized as similar. A second goal of thls study was to
show that Pascal and Fortran programs which used the same

plan would be segmented and labelled in the same way.

Me thod
Subjects. Fifteen Pascal programmers and fifteen Fortran
programmers were recruited from the student population at

Rutgers University. Most of the Pascal programmers were

graduate students in computer science while most of the
Fortran programmers were engineering graduate students.
Each subject was pald $8.00 per hour for particlpation, and

most subjects spent 1.5-2.5 hours in the experiment.

Materials. Nine Fortran programrs and nine Pascal programs
were written for use In this (and subsequent) experiments.
All of the programs are debugged, working code. The nine
programs {n each language group achieved nine dlfferent
tasks, but they wvwere written in accordance with the three
plans shown 1In Table 1. Within each language group, there
were three programs that utilized each of the three plans.

Pascal programs Pasl, Pas2, and Pas3 and Fortran
programs Forl, For2, and For3 were written in accordance
with the first plan in Table 1, the "MGOM®" plan. The MGOM
plan consisted of five subgoals: 1) declare data structures
2) display a MENU, 3) GET an Iinput from the menu, 4) perform
the OPERATION selected by the Input, and 5) return to the
MENU state or quit. Programs Pas! and Forl were data
analysls programs, Programs Pas2 and For2 were computer
mail programs, and programs Pas3 and For3 enulated an
electronic calculator. The texts of these programs appear
in Appendix A.

Pascal programs Pas4, PasS5, and Pasé and Fortran
programs For4, For5, and For6é were all written in accordance
with the second plan 1In Table !, the *“RCP" plan. The RCP

plan consisted of four subgoals: 1) declare data structures,

2> READ lists from files, 3) COMPARE lists and get common
elements, and 4) PRINT the common elements. Programs Pas4
and Ford found common courses in transcripts and printed
these as transfer courses, programs Pas% and For5 compared
two schedules and printed possible meeting times, and
programs Pasé and For6 compared two mailing 1lists and
printed common customers. The texts of these programs
appear in Appendix B. .

Pascal programs Pas7, Pas8, and Pas9 and Fortran
programs For7, For8, and For9 were written in accordance
with the third plan in Table 1, the “RTRDP" plan. The RTRDP
plan consisted of five subgoals: 1) declare data structures,
2) READ and TEST an initial input, 3) display further
information and READ new 1inputs, 4> DO a transaction or
calculatlon, and 5> PRINT the results. Programs Pas? and
For7 emulated a bank teller machine, programs Pas8 and For$8
presented a stimulus and collected a reaction time as if for
a psychology experiment, and programs Pas9 and For9

controlled a computer login segquence.

Procedure. Subjects were run individually or In small

groups. Each subject received a packet <containing
instructions and the nine progranms in either Pascal or
Fortran. Subjects were first instructed to draw lines

between statements in the code in order to “identify the
parts® of the program and to divide -each brogran into

“several major sections.” Each time a subject drew a segment

Sceliee. ———

Table 1: Components of the three programming plans.

Plan f: “MGOM®
a. declare data structures.
b. display a MENU.
c¢. GET an input from the menu.

d. perform the selected OPERATION.

e. return to the MENU state or quit.

Instantiatio of plan !
Data analysis (Forl, Pasl).
Computer mail (For2, Pas2).

Electronic calculator (For3, Pas3).

Plan 2: °RCP"
a. declare data structures.
b. READ lists from files.
c. COMPARE lists and get common elements.

d. PRINT the common elements.

Instantiations of plan 2

Course transfer (For4, Pas4).
Schedules (For5, Pas5).

Mailing lists (Foré6, Pasé).

Table 1. (cont.)

Plan 3: "RTRDP"
a. declare data structures.
b. READ and TEST an initial input.
c. display further information and READ new input.
d. DO a transaction or calculation.

e. PRINT the results.

Inst atjons of an 3
Computer login sequence (For7, Pas?7).

Stimulus-response psychology experiment (For8, Pas8).

Bank teller (For9, Pas9).

line it was numbered 1in order. After segmenting the major
sections of a program the subjects were instructed to write
a descriptive label for each major section "in terms of the
program’s task."” For each program, after segmenting and
labelling the major sections, the subjects were instructed
to draw segment llines within the major sections to identify
subsections. Flnally, subjects were asked to sort the
programs into groups. The subjects were told that programs
belonged In a group If they "work the same way." Subjects
were allowed to form as many groups as they wished but they
could not leave a single program in a group by itself nor
could they put all of the programs together into a single

group.

Results
Subject Programming Experience. Subjects in both the Pascal
and Fortran groups had an average of 3.6 years of
programming expertience. However, subjects In the Pascal
group reported having worked with more programming languages
(a mean of 5.8 languages) ﬁhan subjects in the Fortran group

(a mean of 2.8 languages), t(27)=4.,59, p<.001.

Segmenting. Each subject drew 1ine segments in the code of
nine progranms. We predicted that 1line segments would be
drawn at plan boundaries. For each program, we calculated
the frequency of llne segments drawn after each line. 1If

60% or more of the subjects segmented a program at a

Table 2. Frequencies of segmenting by 60% or more of the

subjects at predicted and not predicted positions in

the Pascal programs.

Segmenting Segmenting
predicted not predicted
Not Not
Qbgerved Qbserved Observed Observed
Pasli 4 0 0 53
Pas2 4 ¢} 0 46
Pas3 3 { 0 48
Pasd 3 1 0 46
Pas5 3 { o) 76
Pasé 2 2 0 31
Pas? 3 1 0 44
Pas8 4 0 o} 43
Pas?9 3 { 0 71
Pascal
Totals 29 7 0 458

Table 3. Frequencies of segmenting by 60% or more of the
subjects at predicted and not predicted positions in

the Fortran progranms.

Segmenting Segmenting
predicted not predicted
Not Not
Observed Observed Observed Cbserved
Forl 3 1 o 46
For2 3 1 o 33
For3 3 1 0] 45
For4 4 0 0 53
For5 4 0 2 51
Foré 4 0 0 45
For7 3 1 0 46
For8 4 o) 0 32
For9 3 i 1 52
Fortran
Totals 31 5 3. 403

“particular line, we considered that line an important chunk
boundary. Important chunk boundaries should correspond to
the predicted plan boundaries.

Tables 2 and 3 show the frequencies of important chunk
boundaries (those that were segmented by 60% or more of the
subjects) at predicted and not-predicted locations for the
nine Pascal programs and the nine Fortran progranms
respectively. Chi-squares on the frequencies for all
programs were significant, ranging from x2(1)=24, p<.05 for
Pas6 to x2(1)=78, p<.001 for Pas5. Twenty-nine out of 36
(81%) of the plan boundaries in the Pascal prograans were
segmented according to our criterion. Thirty-one out of 36
(86%) of the plan boundaries in the Fortran programs were
segmented according to our criterlion. None of the 458 non-
boundary lines were segmented Iin the Pascal programs, and
only 3 out of 406 (<(1%) non-boundary lines were segmented in

the Fortran programs.

Modal Labels of Program Segments. After segmenting the
-prograls, the subjects labelled each section with a
description of 1ts function. We were concerned with whether
these descriptions corresponded with the subgoals that we
claim control each chunk. Tables 4,5, and 6 show the modal
descriptive labels that subjects gave to each chunk of each
program in the MGOM, RCP, and RTRDP plan groups
respectively. Included In this 1list are labels that were

glven to major chunks, those which were lidentified by a

Table 4. Modal descriptive labels for plan components in

Pascal and Fortran programs using the MGOM plan.

e o — i . et o

— e c— . —

a Sis

Past

Declare.

Print instruction.

Get number.

Compute means.

Computer Maijl

Pas2

Declare variable.

Print instruction.

Process message.

Quit.

Electronic Calculator

Pas3

Declare.

Print Menu.

Read In value and
allow choice.

Do calculation.

Forl

Declare.
Display menu.

Read key.

Calculate mean and

update result.

For2

Declare.

Print our menu.

Get input and
print message.

Check if end.

For3

Declare.

Print out menu.

Calculate.

Continue or end.

Table 5. Modal descriptive labels for plan components in

Pascal and'Fortran programs using the RCP plan.

Course transfer
Pas4

Declare.

Read file.
If same then transfer.

Output results.

hedu

Pas5

Declare.
Read file.
Compare lists.

Print result.

Mailing Lists
Pasé6

Declare.
Read data.
Compare lists.

Print result.

For4

Define variables.
Read data file.
Compare data.

Print results.

Forb

Declare.
Read fliles.
Compare.

Print out.

Foré6

Declare.
Read data file.
Compare data.

Print out.

el - i,

o

L e e — e -

Table 6. Modal descriptive labels for plan components in

Pascal and Fortran programs using the RTRDP plan.

K

t r machin

Pas?7

Declare.

Check passaword.
Display options,

Print account.

Psychology experiment

Pas8

Declare.

Initialize variable.
Print out message and
receive response.
Calculate percentage

and print result.

Computer login seguence

Pas9

Declare.
Print account.
Do transaction.

Print result.

For?

Declare.

Read data.

Print menu.

Decrement account and

print result.

For8

Declare.

Give instruction.

Get response and
update count.

Cutput result.

For9

Declare.
Check input.
Choose.

Print result.

segment line drawn by 60% or more of the subjects. Each
label listed Is the most frequent of the set of labels glven
to that chunk (the experimenters judged paraphrases and
close matches in wording to be the same label).

In glancing over these lists, note that descriptions of
the Pascal and Fortran programs which did exactly the same
thing (e.g. Pas! and Forl, Pas2 and For2, Pas3 and For3,
etc.) sound very similar. Also, the six programs within a
plan group also sound similar.

Almost all of the labels are abstract, describing
general computational functions such as “declare variables,"”
"read data file,"” “"display menu,” "calculate,” and “print
results.” Only a few labels are task specific, namely
“compute means® and "calculate means® in Pasl and Forl
respectively, "1f same then transfer® 1in Pasd4, “check
password" in " Pas7, "decrement account” in For7, “calculate

percentage” in Pas8, and "print account® in Pas9.

Descriptions of the plan chunks. Table 7 shows the major
chunks of each plan and indicates whether or not 60% or more
of the subjects provided an appropriate descriptive label
for each chunk In each of the six programs. Subjects
provided appropriate descriptions for all of the chunks in
all of the instances of the RCP plan. This was the most
successful set of programs in terms of matching label data

to a plan.

13

—

Table 7. Production of appropriate decriptions for plan
coaponents. “Yes” indicates that 60% or more of the

subjects provided an appropriate description.

MGOM Plan Pas! Pas2 Pas3 = Forl For2 For3l
Declare data structure. yes yes vyes yes yes yes
Display menu/instruct. yes yes yes yes lyes yes
Get/read input. yes no yes yes yes yes
Calculate/compute. yes vyes yes yes no no
Quit.l no yes no no yes yes
RCP Plan Pasq4 Pasb Pas6é =~ For4 For$ Foré
Declare data structure. yes yes yes yes yés yes
Read files. yes vyes yes yes yes yes
Compare lists. yes yes yes yes vyes yes
Print results. yes yes yes yes yes yes
RTRDP Plan Pas?7 Pas8 Pas9 For7 For8 For9
Declare data structure. yes yes vyes yes yes yes
Test/initialize inputs. yes yes no yes no yes
Display instr./read Inp. yes yes yes yes yes no
Do transaction. no yes2 yes yes2 yes yes
Print results. yes yes2 yes Yyes2 yes yes

1°Quit® was an unexpected label, see text for a discussion.

2These components were described together in one label.

For the MGOM plan, a majority of the subjects provided
descriptions for the first two chunks, “Declare data
structure® and “Display Menu/Instructions,*® in each
program. Fewer than our 60% criterion provided a label for
the “Get/Read Input® chunk in Pas2, but this chunk was
included in descriptions of all the other programs. The
final chunk, "Calculate/Compute”®, was included in
descriptions of all the Pascal programs and Forl, but not
For2 and For3. Apparently many subjects felt that getting
input and performing a computation were part of the same
chunk in these latter two progranms. Finally, subjects
included an unexpected chunk, which they labelled "Quit," in
Pas2, For2 and For3d. This chunk is branched to when the
"Quit” option 1is chosen in the ®"Get Input® part of the
program.

For the RTRDP plan, descriptions were provided by a
majority of subjects for all of the plan chunks in Pas8 and
For?. In Pas9 and For8 the second chunk, "Test/Initialize
Inputs”™ did not meet the 60% criterion and in those cases
the chunk was included as part of the “Display
Instructions/Read Input®" subgoal. In For9, the “Dlisplay
Instructions/Read Input” and “"Test/Initialize Inputs” chunks
were also conblned, but described as “"Check/Initialize
Inputs.® Finally, "Do Transaction® and "Print Results" were
described as separate chunks in Pas9, For8 and For9, but
were described togther in Pas8 and For7. “Do Transaction®

did not meet the 60% criterion in Pas7.

15

Table 8. Stress values for 1-3 dimensional solutions to
nultidimensional scaling of Pascal and Fortran program

sorting data.

Programming Language
Dimensionality P Fort
One . 196 . 124
Two .002 . 000
Three . 000 .000

Program Sorting. After segmenting and labelling, the
programmers were asked to sort the programs into groups
according to “the way they work.® They were instructed to
sort the programs into as many groups as they wished with
the constraints that no program could be left by itself and
all the programs must not be sorted together into a single
group.

Multi-dimensional scaling (HDSi was used to determine
if the Pascal and Fortran programs were sorted into three
distinct plan groups. For each language group, the input to
the MDS algorithm was a matrix of the frequencies with which
each program was sorted with each of the other progranms.
Use of the frequency data is based on the assumption that
programs which are more similar will be sorted together more
frequently. Separate MDS analyses were performed on the
Pascal and the Fortran data. The strongest prediction is
that a one-dimensional solution will fit both data sets well
and that the plot of the stimulus coordinates will show
three clusters based on the plan groups.

Table 8 shows the “stress® values for one, two, and
three-dimenslonal MDS solutions for both the Pascal and the
Fortran data. Lower stress values ind{cate a good fit to
the data, and values below .15 are considered to be good
fits (Kruskal & Wish, 1978). On these criteria, the one
dimensional solution fits the Fortran data very well and the

Pascal data fairly well. A two dimensional solution

i S————

17

PAS1 PAS2 PAS3 PAS8 PAS7 PAS9 PAS4 PAS5 PAS6

SIS

(A) | l
-2 -1 0 1 2
DIMENSION 1 (PLAN)
FOR5 FOR6 FOR4 FOR8 FOR7 FOR9 FOR2 FOR1 FOR3
| | | | |

(B) i ! | 1 !
>3 -1 0 1 2

DIMENSION 1 (PLAN)

Figure 1. Plots of the stimulus coordinates for one-
dimensional solutions to MDS of Pascal (A)
and Fortran (B) program sorting data.

completely explains the distributions of data for both the
Fortran programs (although Kruskal & Wish, 1978 suggest that
a one-dimensional solution with stress below .15 |is
adequate) and the Pascal programs.

Figure | presents one-dimensional plots of the stimulus
coordinates for Pascal (Figure 1A) and Fortran (Figure [B)
program sorts. Note that three clusters are present in both
plots. One cluster contains a tight distribution of Pasl,
Pas2, and Pas3 in Figure 1A and Fori, For2, and For3 in
Figure 1B, all members of the MGOM plan group. Another
cluster contains a tight distribution of Pas4, Pas5, and
Pas6 in Figure 1A and For4, For5, and Foré in Figure 1B, all
members if the RCP plan group. A third cluster contains
Pas7 and Pas9 in Figure 1A and For?7, For8, and For9 in
Figure 1B, all members of the RTRDP plan group. Note that
Pas8, which should be in the RTRDP plan group, is near the
members of the MGOM group. This program was the “psychology
experiment” progranm which presents stimuli, collects
reaction times, and writes means to a file. Many subjects
commented that they did not really understand this progran.
Several subject said that they sorted it with the MGOM
programs because they perform numerical calculations. Pasl
and Forl, in fact, calculate means and therefore share a
task with Pas8 and For8. When subjects did not understand
the structure of the program, they sorted on this common

task feature.

19

DIMENSION 2 2
Fasz PAS1 PAS3 PAS4 PASS PAS6
PAS8 PAS7 PASS
1 -
No B
password .
checking
0 T
-1 -
Password
checking
_]]]
2 l | |

DIMENSION 1 (PLAN)

Figure 2. Plots of the stimulus coordinates for two-
dimensional solutions to MDS of Pascal

program sorting data.

DIMENSION 2 2
FORS FOR6 FOR4
FOR8 FOR7 FORY
- FOR2 FOR1 FOR3
No 1
password <Zijj£:;””
chaecking
o T
Password
checking
- | |]
2 i ! i
-2 -1 0 1 2
DIMENSION 1 (PLAN)
Figure 3. Plots of the stimulus coordinations for two-

dimensional solutions to MDS of Fortran
program sorting data.

22

Figures 2 and 3 present the two-dimensional plots of
the stimulus coordinates for Pascal and Fortran program
sorts respectively. We have <circled the original plan
groups in these two figures, and drawn a line to separate
Pas7 and Pas9 from the other programs in Figure 2 and For?7
and For9 from the other programs in Figure 3. Additlon of
the second dimension seems to draw these two programs away
from the rest in both language gréups. In looking at the
descriptions that subjects gave and the contents of the
programs themselves, we conclude that these programs (one is
the bank teller program and the other Is the login program)
are dlistinctive since they both contain requests for
passwords and require a test of the passwords before
continuing.

Finally, hierarchical clustering (Johnson, 1967) |is
often used with sorting data to show group structure. Figure
4 shows hierarchical clustering of the sorting data for the
Pascal (Fligure 4a) and Fortran (Figure 4b) programs. Highly
dissimilar items, indicated by infrequent sorts into the
same group, cause branching high Iin the tree structures.
More similar items cause branching lower in the trees.

For the Pascal programs (Figure ’4a), the highest
braching creates two groups. One group contains Pas4, PasS5,
and Pasé while the remaining programs are in the second
group. Pasd4, Pas5, and Pasé are all members of the RCP plan
group, programs whlch handle non-numerical Informatlon. The

remaining programs all handle numerical information. Thus,

PASY9
PAS7
PASS
PAS3
PAS1
PAS2
PAS6
PASS
PAS4

(A) -20.00 DISSIMILARITIES 0.00

FOR9
* FOR7
FORS
: FOR3
FOR1
FOR2
FOR6
FORS
FOR4

(B) -20.00 DISSIMILARITIES 0.00

Figure 4. Hierarchical clustering of Pascal (A) and Fortran (B)

program sorting data.

an important dimension for the Pascal code may be the type
of data that is handled. Among the Pascal programs that
handle numerical data, two more clusters emerge high in the
tree. One cluster contains Pas7 and Pas9, both members of
the RTRDP plan group and the two programs which check
passwords. In the other cluster are Pasl, Pas2, and Pas3,
all members of the MGOM plan group, and the deviant progran,
Pas8. The three clusters (Pas4-Pas5-Pas6é, Pas5-Pas9, and
Pasl1-Pas2-Pas3-Pas8) do not begin to break up until much
lower in the tree, suggesting that they fcrm three important
clusters which (with the exception of Pas8) correspond to
the three plan groups examined in this experiment.

For the Fortran programs (Figure 4b), a similar, but
not exactly equivalent picture emerges from hierarchical
clustering. At the highest branching level, For7 and For9,
the password programs in the RTRDP plan group, form a
cluster distinct from the other programs. At the second
branching level, which is still very high, For4, For5, and
For6, the non-numerical RCP programs, form a cluster
distinct from Forl, For2, and For3, all members of the MGOM
plan group, and the deviant Fors8. At ‘this point, the
hierarchlical structure of the Pascal and Fortran progranmns
looks very similar. " Unlike Pas8 {n the Pascal programs,
For8 breaks away from the Fori-For2-For3 cluster at a high
level. This leaves three plan clusters in the Fortran data
(For4-For5-For6, For7-For9, and Forl!-For2-For3) that remaln

together until 1low in the tree and that correspond to the

24

three plan groups examined in this experiment. For8 is not

cleanly in any cluster.

Discussion

In this experiment subjects segmented and labelled
sections of several programs and then sorted the programs
into groups. The positions of segmenting 1lines in the
programs was consistent with the predicted positions of plan
chunks for both Pascal and Fortran programs written in
accordance with three plans. The labels that subjects gave
to these chunks were similar within plan groups, even across
Pascal and Fortran language groups. A majority of subjects
(60% or more) provided 1labels that reflected the major
subgoals that plan components achieved for most of the plan

chunks in the programs. Examination of the modal labels for

'plan chunks shows both abstract descriptions (e.g. "print

results”™) and more task specific descriptions (e.g. “compute
means”), however the bulk of the descriptions are abstract.
In those cases where a majority of subjects did not provide
a chunk label, we must assume that they percefved two
subgoals as being combined. This occured most often when
the subgoals were "Calculate® and "Print." In some cases
where programs eiiher performed a calculation and returned
to a menu or quit, subjects described the "Quit® subgoal as
separate from the "Calculate” subgoal.

Sorting data for both the Pascal and Fortran progranms

shows that they cluster Iinto plan groups. Thls suggests

25

that subjects perceive the abstract plan structure common to
all of the programs within a plan cluster and use it a basis
for classifylng the programs. A secondary classification
criterion is based on common features. In one case, when
the structure of a program was not clear to subjects, they
based their sorting judgement on the fact that other
programs calculated means. When a second dimension |Is
examined, subjects appeared to be sorting on a task-specific
feature, namely whether or not a program had password
checking. For Pascal programs, the data type was an
important feature for distinguishing programs.

We conclude from this data that programmers consider
both general plan information that is common to many tasks
and task-specific program constructs when comprehending
code. The similarity of labels for both Pascal and Fortran
data suggests that some general programming plans are common
across languages. In future studies, Wwe expect to examine
thls issue more carefully. Pilot data on sorting of
descriptions of these Pascal and Fortran programs suggests
that language {information ls not present In the abstract
representations that are used to label the programs.

Finally, we should note that although the data,
especlally the sorting data, provides good evidence for
abstract plan structures, we were not able to generate
perfect stimull. One of the programs was unexpectedly
sorted into a different plan group, apparently on the basis

of non-plan related criteria. This suggests a pracfical

26

recommendaton that all complex stimuli to be used in studies
of programmers and thelr tasks should be empirically
validated on the constructs that the experimenters feel are
important. The deviant program also brings up a theoretical
question. Hov are different types of Kknowledge, 1like
general plan knowledge, task-specific knowledge, and
knowledge of language constructs related and used together
to reason about code? In future studies <(using these
materials, by the way) we will examine some of these

questions.

27

Acknowledgenments
Our thanks to Dr. John O’Hare as the principal advocate
and critic of this research program and to the Office of
Naval Research for their generous support. We are also

grateful to Davlid Kojzumi for his assistance in the MDS and

clustering analyses.

28

29

References

Adelson, B. (1981). Problem solving and the development of
abstract categories in programming languages. Memory and

Cognition, 9, 422-433.

Bonar, J., & Soloway, E. (1985). Preprogramming knowledge: A
major source of mlsconceptions In novice programmers.

Human=Computer Interaction, 1, 133-161.

Ehrlich, K., & Soloway, E. (1984), An empirical
investigation of tacit plan knowledge in programming. In
J.C. Thomas & M.L. Schneider (Eds.), Human factors |In
computer systenms. Norwood, NJ: Ablex Publishing

Corporation.

Johnson, S.C. (1967). Hierarchical clustering schemes.

Psychometrika, 32, 241-254.

Kruskal, J.B., & Wish, M. (1978). Multidimensional scalling.

Beverly Hills, CA: Sage Publications Inc.

Rist, R.S. (1986). Plans in programming: Definition,
demonstration and development. In E. Soloway & S. Iyengar
(Eds.), Empirical Studies of Programmers. Norwood, NJ:

Ablex Publishing Corporation.

P -

30

Soloway, E., & Ehrlich, K. (1984), Empirical studies of
programming Kknowledge, JIFEE Transactions on Software

Englineerling, 5,, 595-609.

Soloway, E., Ehrlich, K., Bonar, J., & Greenspan, J. (1982).
What do novices know about programming? In A. Badre & B.
Schne {derman (Eds.), Directions in human-computer

interaction. Norwocod, NJ: Ablex Publishing Corporation..

Appendix A. Texts of Pascal and Fortran programs
that belong to the “"MGOM" plan group (6 pages).

W

PROGRAM Pasli(input,output);{ 10/03/’86)
CONST
No = 5;.
VAR
1,J3,T,Intrvl,Temp,ERR,NoKey,Num : lnteger;
Result : array (1..Nol of real;
Key : string (4];

BEGIN
for I := 1 to 6 do writeln;
writeln (’ kkkkkkkkkk MANUAL kkkkkkkkkk’);
writelnswriteln;
writeln (’ NUM LOCK : press it before using’):;
writeln (’ B orb ¢ press it to beglin processing’);
writeln ¢’ BACKSPACE : press It to backspace’);
writeln ¢’ ENTER : press it after keying’);
writeln ¢’ =" : press it for mean of single’);
writeln (¢’ group’)d;
writeln ¢’ Eore ¢ press it to end one task’);
writeln ¢’ C or ¢ : press |t to clear screen’):;
writeln ¢’ and continue’);
writeln (’ Q or g ¢ press it to quit’);

read (Key);
If (Key = ’B’) or (Key = ’b’) then
begin
writelniwriteln;writeln:;
write(’ * How many groups do you want to analyze ? ’);
read(Num)
end;
Key:=’¢c’;
repeat
J:=03;
if (Key = ’C’) or (Key = ’c’) then clrscr;
for I:=1 to 6 do writeln:
for I:= 1 to Num do Result(l]:=0;
repeat
1:=0;
J:=J+1;
Temp:=J;
repeat
read(Key):;
write(’ ’);
I:=I+1;
T:=1;
val(Key,NoKey,ERR);
Result(Jl:=Result{J)+NoKey;
until (Key = ’=’) or (Key = ’E’) or (Key =’e’);
I1f (Key <> ’E’) and (Key <> ’e’) then

begin

Result(J}):=Result(J]1/(T-1);

writeln(’==)> MEAN : ’,Result(J]),’ =cccvccacan= (',J,%)*)
end

until (Key = ’E’) or (Key = ’e’);
writelnswriteln;writeln;
writeln(’xxx Q@ or q for QUIT, C or ¢ for Starting agaln *xx’);
read(Key)
until (Key = ’@’) or (Key = ’q’)
END.

Cxxx PROGRAM FORTRAN! (11/12/’86}
INTEGER I,J,T, TEMP,NUM,NOKEY
REAL RESULT
CHARACTERx4 KEY
DIMENSION RESULT(5)
WRITE(%,10)

10 FORMAT(///7/717)
WRITEC(x, %) ?xxx MANUL xxx’

WRITE(x%, x) *NUM LOCK : PRESS IT BEFORE USING’
WRITE(x,x)’[B] : TO BEGIN’

WRITE(x, x)*BACKSPACE : BACKSPACE’

WRITE(x, x) *ENTER "+ PRESS IT AFTER KEYING’
WRITE(x,x)* (=] : TO GET ONE MEAN’
WRITE(x, %)’ [E] : END ONE TASK AND START’
WRITE(x, %)’ AGAIN’

WRITE(x, %)’ (Q] : @UIT’

READ(x, 20) KEY
20 FORMAT(A)
50 IF (KEY.EQ.’B’) THEN
WRITE(x,%)’x HOW MANY GROUPS YOU WANT ANALYSE ?°’
READ(x, x) NUM
ENDIF
IF (KEY.NE.’Q’) THEN
DO 150 I=1,NUM
RESULT(I)>=0
150 CONTINUE

J=0

IF (KEY.NE.’E’)> THEN
200 I=0

J=J+1
300 READ(x,20) KEY

IF((KEY.NE.’=").AND.(KEY.NE.’E’).AND.(KEY.NE.’Q’)) THEN
NOKEY=ICHAR(KEY)-48

I=I+1

RESULT(J)>=RESULT(J)+NOKEY

GATO 300
ELSEIF (KEY.EQ.’=’'> THEN

RESULT(J)>=RESULT(J) /I

WRITE(x,%x)’==> MEAN :’

WRITE(x,x) RESULT(J)

GOTO 200
ELSEIF (KEY.EQ.’E’) THEN
KEY="B’
GOTO 50
ENDIF
ENDIF
ENDIF
STOP
END

PROGRAM Pas2(input,output);{10/13/’86}

VAR
I
Ke
Ke
Ke

BEGIN
fo
wr
wr

writeln
writeln
writeln
writeln
writeln
writeln

wr
wr
re
cl

integer;
yStr string [401;
yPath : string [15];
Y : char;

rl :=1 to 6 do writeln;
iteln ¢’
iteln;writeln:;
(’

(l

(’

(’

(’

(’
jteln (¢’

iteln ¢’
ad(Key):

rscr;

[M]ail
(ENTER]
[BACKSPACE)
(Elrase
(Flrom

(Tlo

[(Nlext
(Qluit

while Key in [°M’,’m’,’E’,’e’] do

be

en
if
be

en
END.

gin

for I:=1 to 10 do writeln;

write (’ x *);

read(Key):

write(’ ’)s

readln(KeyStr);i;writeln;

write(’ x ’);

read(Key);

if not (Key

begin
write(’ *)s
readln(KeyPath);
write(’ *
read(Key);
write(’ ’ys;
readln(KeyPath);
write(’ *
read(Key);

end;

if (Key

begin
Key:=’m";
clrscr;

end

d;

Key in (’@’,°q’] then
gin
writelniwriteln:;
writeln(’

d

in [’E’,’e”1) then

’);

’);

in [’N’,’n’1) and (not (Key

in

All JOBS DONE,

kkkkkkkkkk MANUAL *hkkxkkkkkkk’);

to enter massage’);

press it after completing’);
press it to backspace’);

to erase massage’);

from whom’);

to whom’);

done and for next message’);
done and quit’);

(’e’,”’E’1)) then

BYE !

Caxx

10

20

30
100

110

120

PROGRAM FORTRAN2 (11/5/’86}

INTEGER I

CHARACTER KEY
CHARACTER=%15 KEYSTR,KEYPATH
J=0

WRITE(x,10)
FORMATC/////1)

WRITE(x, %)’ kdkkkx MANUL *xxx’
WRITE(%x,20)

FORMAT(/ /)

WRITE(x%x, %)’ (MIAIL : ENTER MASSAGE’
WRITE(x, %)’ [(ENTER] : END OF MASSAGE’
WRITE(x, %)’ (BACKSPACE]l : BACKSPACE’
WRITE(x, %)’ [E1RASE : ERASE MASSAGE’
WRITE(x, %)’ [FIROM : FROM WHOM’
WRITE(Xx,%x)’ (TIO : TO WHOM’
WRITE(x,x)’ [NIJEXT : DONE, FOR NEXT’
WRITE(x, %)’ (QIUIT : DONE AND QUIT’
READ(x, 30) KEY

FORMAT(A)

IF (CKEY .EQ. ’M’) .OR. (KEY .E@. ’*E’)) THEN
WRITEC(Xx, %)’ %’
READ(x, 30) KEYSTR
READ(x,30) KEY
IF (KEY .EQ. ’E’) GOTO 100
IF ¢(KEY .NE. ’F’) THEN
GOTO 110
ELSE
WRITE(%,x)’ FROM : °
READ(x,30) KEYPATH
ENDIF
READ(x, 30) KEY
IF (KEY .EQ. ’E’) GOTO 100
IF (KEY .NE. ’T’) THEN 1
GOTO 120
ELSE
WRITE(x,%x)* TO :?
READ(x,30) KEYPATH
ENDIF
ENDIF
READ(x,30) KEY
IF (KEY .EQ. °*N’) THEN
KEY="M"*
GOTO 100
ELSEIF (XEY .EQ. ’Q’) THEN
WRITE(x,%)>*!! JOBS DONE, BYE !!’
ENDIF
STOP
END

..-.--...--.-----------—-—--__

PROGRAM Pas3(input,output); (09/26/’86}
VAR

I : integer;

NoKey,Result : real;

Key : char:

BEGIN
for I := 1 to 6 do writeln:;
writeln ¢’ kkdkkkkkkkk MANUAL dkdkdkdkkkkhx’);
writeln;writeln;
writeln (? NUM LOCK : press {t before using’);
writeln (’ Borb : press it to begin computing’);
writeln (? ENTER ¢ press it after keying’);
writeln (° Corc : press It to clear screen’);
writeln ¢ and contlinue’);
writeln (’ Q@ or g : press 1t to quit’);

read (Key):;
If (Key = ’B’) or (Key = ’b’) then Key := ’c’;
repeat
If (Key = ’C’) or (Key = ’c’) then clrscr;
Result:=0;
Key:=’+’;
repeat
read(NoKey);
case Key of
’+? : Result:=Result+NoKey:;
’=? : Result:=Result-NoKey:;
’x’ : Result:=ResultxNokey:;
'/’ : Result:=Result/NoKey
end;
read(Key)
until Key = ’=*;
writeln(Result);
read(Key)
until (Key = ’g’) or (Key = ’Q@°)
IND.

Cxxx

10

20

100
200

300

500

600
610
650

PROGRAM FORTRAN3{10/27/’86}

INTEGER I,NUM
REAL NOKEY, RESULT
CHARACTER KEY
NUM=10
WRITE(x, 10)
FORMATC///7177)
WRITE(x, %)’
WRITE(x,20)
FORMAT(//)
WRITE(x, %)’
WRITEC(x, %)’
WRITECx, %)’
WRITE(X, %)’
WRITE(x, %)’
READ(x%, 100)
FORMAT(A)
IF ((KEY .EQ. ’B’) .OR.
WRITE(x,x)’HERE WE BEGIN....’
RESULT=0
KEY=’+"
READ(x%x, x) NOKEY
IF (KEY .EQ. ’+’) THEN
RESULT=RESULT+NOKEY
ELSEIF (KEY .EQ. ’-’) THEN
RESULT=RESULT-NOKEY
ELSEIF (KEY .EG. ’x’) THEN
RESULT=RESULTxNOKEY
ELSEIF (KEY .EQ@. ’/’) THEN
RESULT=RESULT/NOKEY
ENDIF
READ(x, 100) KEY
IF (KEY .EQ. ’=’) THEN
GOTO 600
ELSE
GOTO 300
ENDIF
CONTINUE
ENDIF
WRITE(x,610) RESULT
FORMAT(F10.3)
READ(x, 100) KEY
IF ((KEY .NE. ’C’) .AND.
IF (KEY .EQ. ’C’) THEN
GOTO 200
ELSE
WRITE(x, %)’
ENDIF
STOP
END

NUM LOCK :
(B 1 :
ENTER
(C 1
[Q@]

KEY

(KEY

(KEY .EQ.

.NE.

*kkx MANUAL x%xxx’

PRESS IT BEFORE USING’
TO BEGIN COMPUTING®
END OF SINGLE DATA’

GO ON NEXT TASK’

QUIT’

*C’)) THEN

’a@’')) GOTO 650

xkkk THANK x%xxx’

— A e s A 3 s - i

e o —m——
—— e~

Appendix B. Texts of Pascal and Fortran prograas
that belong to the "RCP" plan group (6 pages).

PROGRAM Pasd4;(10/08/’86}
TYPE
Word=string (151;
Coursetype = record
Course : Word:;
Crts : Integer
end;
CONST
N1=2;
N2=3;
VAR
1,J,K,Ctr : integer:
SUNY, Transf :arrayll..N1] of CourseType:;
MIT : arrayl1..N2] of CourseType:;
Datal,Data2:text;
BEGIN
Ctr:=0;
assign(Datal,’datai.3’);
reset(Datal);
‘for I:=1 to N! do readln(Datal,SUNY[I]}.Course,SUNY[I).Crts);
close(Datal);
assign(Data2,’data2.3’);
reset(Data2);
for J:=1 to N2 do readln(Data2,MIT(J].Course,MIT(J].Crts);
close(Data2);
for I:=1 to N! do
begin
for J:=1 to N2 do
begin
if (SUNY[(I].Crts>=MIT(J].Crts) and (SUNY(I]1.Course=MITI{J]
begin
Ctr:=Ctr+1i:;
with Transf(Ctrl
do begin
Course:=SUNY[I].Course;
Crts:=MIT(I].Crts
end
end
end
end:;
for I:=1 to 8 do writeln:

.Course) then

writeln(’ *%x%xx% COURSES CAN BE TRANSFERED *xxx%x’);

‘writelniwriteln;
for I:=1 to Ctr
do begin
with Transf{I] do

writeln(’ x *,1:3,° ’,Course:15,Crts:5)
end;
writeln;writeln(’ AKKKK =w—meooe——- END =ceccacncccea Kkkkk®) .

END.

Chxx

10
20

100

200

400

410

420
500

PROGRAM FORTRAN4 (11/6/°86}

INTEGER 1,J,K,C,CRT1,CRT2,CRT
CHARACTERx15 SUNY,MIT, TRANSF
DIMENSION CRT1(5),CRT2(5),CRT(5)
DIMENSION SUNY(5),MIT(5), TRANSF(5)
C=0

OPEN(20,FILE="DATA1.3?’)
OPEN(21,FILE="DATA2.3’)
FORMAT(A)

FORMAT(I12)

DO 100 I=1,5

READ(C20,10) SUNY(I)

READ(20,20) CRTIC(I)

CONTINUE

DO 200 J=i{,5

READ(21,10) MIT(J)

READ(21,20) CRT2(J)

CONTINUE

DO 400 I=1,5

DO 400 J=1,5

IF (SUNYCI)>.NE.MITCJ)>) GOTO400
IF (CRT1C¢(I).LT.CRT2¢(J)) GOTO 400
C=C+1

CRT(C)I>=CRT2¢J)

TRANSF(C)>=MIT(I)

CONTINUE

WRITE(x,410)

FORMATC///1717)

WRITE(%, %)’ xxx%x COURSES CAN BE TRANSFERED *%xx’
WRITEC(x, %)’ COURSE CREDITS?
DO 500 I=1!,C

WRITE(x,420) TRANSF(I),CRTC(I)
FORMAT(A,’ *,I12)

CONTINUE

WRITE (%, k)’ kxkkkkkkkkkkkkkx END sk ks kkkkkkkkkkkkxx’
STOP

END

ROGRAM Pas5:{ 10/01/’86)

YPE
WeekDay = (Mon,Tue,Wen,Thu,Fri);
Schedule = record

/AR

Morning : char;

Noon : char;

Afternoon : char
end;

I,0rdDay : integer:

Lori,Bruce,ComTime : array (Mon..Fril] of Schedule;
Day : WeekDay:;

Datal,Data2 : text:;

3EGIN

assign(Datal,’datal’);
reset(Datal);
for Day:=Mon to Fri do
with Lori(Dayl do readln(Datal,Morning,Noon,Afternoon);
close(Datal);
assign(Data2,’data2’);
reset(Data2);
for Day:=Mon to Fri do
with Brucel(Day] do readln(Data2,Morning,Noon,Afternoon);
close(Data2);
for Day:=Mon to Fri
do begin
with Lorii{Dayl] do
begin
{f (Morning = Bruce(Dayl.Morning) and (Mornling = ’%x’)
then ComTimef{Dayl.Morning:=’x%x"
else ComTime(Dayl.Morning:=’-?;
if (Noon = Bruce(Dayl.Noon) and (Noon = ’x%x’)
then ComTime(Day].Noon:=’x%’
else ComTime(Dayl].Noon:=’=-";
1f (Afternoon = Brucel(Dayl.Afternoon)> and (Afternoon = ’*x’)
then ComTime(Dayl.Afternoon:=’x%’
else ComTimelDayl.Afternoon:="’~"
end
end;
for I:=1 to 8 do writeln:
writeln(’ xkx%x%x THE COMMON SCHEDULE x%xxx%x’);
writelniwriteln:;
writeln(’ *,? Morning Noon Afternoon’);
for Day:=Mon to Fri do
begin
" OrdDay:=ord(Day)+1;
write(’ % ’,0OrdDay,’ 'y
with ComTime(Day] do writeln(Morning:6,Noon:12,Afternoon:13)
end ‘

END.

Cxxx

10

100

200

300

500

PROGRAM FORTRANS5 (31/10/’86}

INTEGER I,J,0RDAY,DAY

CHARACTER LORI,BRUCE,COMTIME

DIMENSION LORI(S5, 3),BRUCE(5,3),COMTIME(S, 3)

OPEN(20,FILE="DATAl’)

OPEN(21,FILE="DATA2’)

FORMAT(A)

DO 100 I=i1,5

Do 100 J=1,3

READ(20,10) LORICI,J)

READ(21,10) BRUCE(I,J)

CONTINUE

DO 200 I=1,5

DO 200 J=1,3

IF(C(LORI(I,J).EQ.BRUCE(I,J)).AND.C(LORICI,J).EQ.’*"))THEN
COMTIME(CL,J)="x%"’

ELSE
COMTIME(I,J)>="<-"

ENDIF

CONTINUE

WRITE(x, 300)

FORMATC/////71)

DO 500 I=1,5

WRITE(x,x) I

WRITE(%,x) COMTIME(I,1),COMTIME(I,2),COMTIME(I,3)

CONTINUE

STOP

END

PROGRAM Pasé6;(09/24/’86)
TYPE
Word=string [15];
Psnfl=record
Name :Word;

Tele:Word
end;
CONST
N1=2;
N2=3;
VAR

I,J,K,Ctr:integer;

JJ,CoList:arrayl(1..N1] of Psnfl;

ATT:arrayl1..N2] of Psnfl;

Datal,Data2:text;

BEGIN

Ctr:=0;

assign(Datal,’datal’);

reset(Datal);
sfor I:=1 to Nl do readln(Datal,JJ(I].Name,JJI[I]).Tele):;
close(Datal);

assign(Data2,’data2’);

reset(Data2);

for J:=1 to N2 do readln(Data2,ATT(J].Name,ATT{(J].Tele);
close(Data2);

for I:=1 to NI

do begin
for J:=1 to N2
do begin
if JJ(I]1.Name=ATT({J].Name
then begin
Ctr:=Ctr+1;
with ColList(Ctr]
do begin
Name:=ATT(J].Name:;
Tele:=ATTlJ).Tele
‘end;
end
end
end;

writeln¢’ xkkxkx THE COMMON CUSTOMERS xxXx%xx%x’);
for I:=1 to Ctr

‘do begin
with CoList(I] do

writela(’ * *,I,” *?,Name,Tele)
end

END.

Cxxx PROGRAM FORTRAN6 (10/20/°86)

CHARACTERx15 BELL,RCA,COLIST
INTEGER I,J,K,CTR
INTEGER%4 TEL1, TEL2,COTEL
DIMENSION BELL(2),RCA(3),COLIST(2)
DIMENSION TEL1(2),TEL2(3),COTEL(2)
CTR=0
OPEN(20,FILE="DATA1.1*)
OPEN(21,FILE="DATA2.1*)
DO 100 I=1,2
READ(20,10)> BELL(I)
READ(20,20) TEL1(I)
10 FORMAT(A)
20 FORMAT(I11)
100 CONTINUE
DO 200 J=1,3
READ(21,10) RCA(J)
READ(21,20) TEL2¢I)
110 FORMAT(A)
120 FORMAT(I11)
200 CONTINUE
210 DO 300 I=1,2
DO 300 J=1,3
IF (.NOT. (BELL(I).EQ@.RCA(J))) GOTO 300
CTR=CTR+]
COLIST(CTR)=RCA(J)
COTEL(CTR)>=TEL2(J)
300 CONTINUE
WRITEC(x, x) ’ *%xx THE COMMON CUSTOMERS xxx%x’
DO 500 K=1,CTR
WRITE(x,x) * ’»K,COLIST(K),” ’,COTEL(K)
500 CONTINUE
STOP
600 WRITEC(%, %) °NO SUCH FILE’
END

Appendix C. Texts of Pascal and Fortran prograns
that belong to the "RTRDP" plan group (9 pages).

PROG
TYPE

VAR

BEGI

RAM Pas7;(10/09/’86}
LogType = record
) Date string (815
IDNo string (91;
PassWd : string (7]}
Account : real
end;
TempA : real:;
Logln LogType:
KeyS,TempD : string (12];
Key : char:
1,J,NoKey : integer;
DataC : text:;
N

assign(DataC, "datac.2');
reset(DataC):;

with LogIn do readln(DataC,Date,IDNo,PassWd,Account);

close(DataC);
TempD:=LogIn.Date:;
TempA:=Logln.Account;
for I:=1 to 10 do writelns;
write(’ *
readln(LogIn.Date);
write(’ %
readln(KeyS);
if KeyS <> LoglIn.IDNo then
begin
writeln(chr(007),’
write(’

end;
write(’ *
readln(KeyS);

* ID No.
repeat readln(KeyS) until KeyS =

Date ')

ID No. : ?*);

!t!! WRONG ID No.,

*)s

TRY AGAIN
LogIn.IDNo

Password ’);

if KeyS <> LogIn.PassWd then

begin
writeln(chr(007),’
write(’

end;

clrscr;

for I:=1 to 10 do writeln:
writeln(’

writeln;

writeln(’

writeln(’
writeln;writeln;writeln;
writeln¢’

repeat read(Key) until Key
clrscr;

for I:=1 to 7 do writeln;
writeln(’

writelni;writeln:

writeln(’

writeln(’

writeln(’

writeln(’

writeln(’
writeln;writeln;write(’
repeat read(Key) until Key
clrscr;

for I:=1 to 10 do writeln:;
| 7 PR - L k_*

-—- .
Py

* ' Password
repeat readln(KeyS) until KeyS =

- ’ » .
=

t1t!t WRONG NUMBER, TRY AGAIN
’);
LogIn.PassWd

* RECORD OF ’,LogIn.IDNo,’ %x’);
DATE of last time

MONEY left

’,TempD:9);
*,TempA:9);

-=-(HIT SPACE TO CONTINUE)>=-=");

’

OPTIONS :’):;
(P 1 Pascal’);
t C C language’);
{ 21 Zbasic’);
{ L) Lisp?)i
(Q) Quit’);
-> ")

ln [’p”!c"’zl'Pl"’P”DF"’c"Dz"'L’];

1ty

*C’,’ce? writeln(’ *kxk%x NICE TO MEET YOU IN "C*" x*xxx’);
*2’,’z2" : writeln(’ *xxx WELCOME TO Zbasic xx%xx’);
‘L’,’1’ writeln(’ kxx* NICE TO MEET YOU IN LISP xxxx’)
’Q”Dq’ :

end;

{f Key in [’Q’,’q’] then

else repeat read(Key) until Key in (’@’,’Qq’];
clrscr;

LogIn.Account:=LogIn.Account-0.3;

for I:=1 to 10 do writeln:;

writeln(’ Date : ’,LogIn.Date:9);

writeln(’ MONEY left : ’,Logln.Account:9);

writeln;writeln;

writeln¢(? = esccecccaca-- GOOD BYE ! ~—cecccee=a)
END.

Cxxx

10
20
100

150

200

310
320

330
400

PROGRAM FORTRAN7 (10/29/’86}

INTEGER
REAL
CHARACTER

I1,J,NOKEY
TEMPA,ACCOUNT
KEY

CHARACTERXx7 PASSWRD
CHARACTER%8 DATE *
CHARACTERxy IDNO,KEYS, TEMPD
OPEN(20,FILE="DATAC.2’)
READ(20,10) DATE
READ(20,10) IDNO
READ(20,10) PASSWRD
READ(20,20) ACCOUNT
FORMAT(A)
FORMAT(F7.2)
TEMPD=DATE
TEMPA=ACCOUNT
WRITE(x, %) °* *
READ(x%x, 10) DATE
WRITE(x,x) °* *
READ(x, 10) KEYS
IF (KEYS .NE. IDNO)> THEN
WRITE(x,x) '
GOTO 150
ENDIF
WRITE(x,x) *
READ(x,10) KEYS
IF (KEYS .NE. PASSWRD) THEN
WRITE(x, %) ’ '
GOTO 200
ENDIF
WRITE(x, x)
WRITE(x, x)
WRITE(x, x)
WRITE(x, x)
WRITE(x, x)
WRITE(x, x)
WRITE(x, x)
WRITE(x, %)
WRITE(x, x)
WRITE(Xx, x) ==
READ(x%, %) NUMKEY
IF (NUMKEY .EQ. 2) NUMKEY=-1
IF (NUMKEY) 310,320,330
WRITE(*, %)’ % % %
GOTO 400
WRITE(x, %)’
GOTO 400
WRITE(%x, %)’
READ(%x, 10) KEY
IF (KEY .NE. ’Q’) GOTO 400
ACCOUNT=ACCOUNT=-3.00
WRITE(x,%x) * = ==z=zzz===z==z==============s======
WRITE(x,x) °’ * DATE *,DATE
WRITE(x,x) ’ * MONEY LEFT * ,ACCOUNT
WRITE(x, %) °* ====z=z====z= GOOD BYE !

DATE : °

ID NO :

WRONG, PLEASE REENTER !'!’

PASSWORD : °

WRONG, PLEASE REENTER !'!°

* DTATE OF LAST ENTER ', TEMPD
* MONEY LEFT ’, TEMPA

01 ZBASIC’
1 1 : PASCAL’
21 : LIsSP’
Q1

Y W e W e % w o w e

QuUIT’

WELCOME TO LISP * kK’

% % K

WELCOME TO ZBASIC %xx’

*%x%x WELCOME TO PASCAL xxx’

STOP
END

W —"

PROGRAM Pas8;{(10/03/’'86)
CONST
TriNo = 23
VAR .
PercntY,PercntN : real;
Key : char;
1,J,NoKey,SubNo,Num,ERR,Postv,Negtv : integer;
SaveKey : array (1..TrlNo)] of char;
BEGIN
repeat
read(Keyl:;
val(Key,SubNo,ERR)
until SubNo in {1..301];
for I:=1 to 10 do writeln;
writeln(’ t¢¢ PLEASE LOOK AT FIXATION POINT AFTER HITTING SPACE !'!'!’);
repeat read(Key) until Key = > ?;
Num:=0;Postv:=0;Negtv:=0;
repeat
clrscr;
for I:=1 to 11 do writeln;
writeln(chr(007));
writeln(’ x’);
for I:=1 to 300 do for J:=1 to 300 do;
clrscr;
for I:=1 to 10 do writeln;
writeln(’ AHNX?);
writeln(’ PRBD?);
writeln(’ 0CcsU’);
for I:=1 to 5000 do;
clrscr;
for I:=1 to 200 do for J:=1 to 200 do:;
for I:=1 to 11 do writeln:
write(’ *%x Is "P" in second line (Y/N) ? 7’);
repeat read(Key) until Key In (’Y’,*N’,’y’,’n’1;
Num:=Num+1;
SaveKey(Num]:=Key;
if SaveKey[Numl in (’Y’,’y’] then Postv:=Postv+l;
{f SaveKey(Num] in [’N’,’n’] then Negtv:=Negtv+!
until Num = TrlNo;
PercntY:=Postv/TrlNo;
PercntN:=Negtv/TrlNo;

clrscr;

for I:=1 to 10 do writeln:;

writeln(’ xxkkkkk RESULT kkkkxkx’);

writelni;writeln;

writeln(’ Percentage of Yes response =’,PercntY:9);

writeln(’ Percentage of No respnnse =’,PercntN:9)
iND.

Cxxx

10

20
25

27

30

35

400

600

605
610

620

PROGRAM FORTRANS8 (10/23/°’86}
CHARACTERx! KEY
INTEGER I1,J,SUBNOV,NUM
REAL Y,N,POSTV,NEGTV
WRITE(x,%x)> ’NO. OF SUBJECT : #°
READ(%,5) KEY
FORMAT(A)
DO 10 I=1,20
WRITE(%,5)
CONTINUE
WRITE(x,x)’!!! PLEASE FIXATE AT THE SCREEN !!!°
POSTV=0
NEGTV=0
DO 400 J=1,2
DO 20 I=1,20
WRITE(x%, x)
CONTINUE
DO 25 I=1,19000
CONTINUE
WRITEC(x,x) ? AHNX?’
WRITEC(x, %) * PRBD’
WRITEC(*x,x) °* ocsu’
DO 27 I=1,29000
CONTINUE
DO 30 I=1,50
WRITE(x, x)
CONTINUE
WRITE(x,x) ' ?? IS (P] IN THE FIRST LINE ??°
READ(x,5) KEY
IF ((KEY.NE.’Y’).AND.(KEY.NE.’N’)) GOTO 35
IF (KEY.EQ.’Y’) THEN
POSTV=POSTV+1
ELSE
NEGTV=NEGTV+1
ENDIF
CONTINUE
Y=POSTV/2
N=NEGTV/2
DO 600 I=1,20
WRITE(x, %)
CONTINUE
WRITE(x, %)’ % % % %k k % Kk K RESULT %k K kk Kk k
WRITE(%x,60%)
FORMAT(//)
WRITE(%,610) Y
FORMAT(? PERCENTAGE OF YES RESPONSE=’,F5.2)
WRITE(%x,620) N
FORMAT(’ PERCENTAGE OF NO RESPONSE=’,F5.2)
STOP
END

PROGRAM Pas9;(10/08/°86}

TYPE

VAR

AccaType = record

Date : string [(81;

Name : string (12];

PassWd
Balance
end;

real

TempB,Amount : real;
Account : AccnType:
KeyS,TempD : string (121;
Key : char;

I1,J,ERR,NoKey : integer;
DataC : text;

BEGIN

assign(DataC,’datac’);
reset(DataC);

string (713

with Account do readln(DataC,Date,Name,PassWd,Balance);

close(DataC);

writeln(Account.Date,Account.Name,Account.PassWd,Account.Balance);

TempB:=Account.Balance:
TempD:=Account.Date;
for I:=1 to 10 do writeln;

write(’ *
readln(Account.Date);
write(’ *

readln(KeyS);

{f KeyS <> Account.Name then

begln
writeln(chr¢007),’
write(’

*

repeat readln(KeyS) until KeyS

end;
write(’ *
readln(KeyS);

1f KeyS <> Account.PassWd then

begin
writeln(chr(007),’
write(’

*

repeat readln(KeyS) until KeyS

end;

clrscr;

for I:=1 to 10 do writeln:;
writeln(?’

writeln;

writeln(’

writeln(’
writeln;writelns;writeln:;
writeln(?

repeat read(Key) until Key
clrscr;

for I:=1 to 7 do writeln:;
writeln(’

writeln;writeln:

writeln(’

writeln(’
writelniwriteln;write(’
repeat read(Key) until Key
write(’ 1 :)
readln(Amount);

case Key of

’

*

Date : *);

Name : ’);

11t WRONG NAME, TRY AGAIN ttte2y;
Name : ?);
= Account.Nanme

Password : *);

'ttt WRONG NUMBER, TRY AGAIN !'t1t1°’);
Password :’);
= Account.PassWad

RECORD OF ’,Account.Name,’ *’);

DATE of last time : ’,TempD:9);
BALANCE : ’,Account.Balance:9);

=-(HIT SPACE TO CONTINUE)--’);
? .

’

OPTIONS :’);

in

[

+ 1 : recelve money’);
=1 : deposit’);
[*);

(
{

p+1”_;'o/p];

1P ¢ Nmmaem ¢ Dalanamaas—_Aanamsd Dalamaa | YO
- o s ———— R —

END.

end;

clrscr;

for I:=1 to 10 do writeln:;

writeln(’ * RECORD OF ’,Account.Name,’ x’);
writelns

writeln(’ DATE : ’,Account.Date:9);
writeln(’ BALANCE : ’,Account.Balance:9);
writelns;writeln:;

writeln(’ Kkkkkkkkkk THANKS Axkkkkkk kxk’)

. et A A
e o ——— o — -

e — = = -

C**; PROGRAM FORTRANY (10/22/’86}

10

20

30

100
200

300
400

CHARACTER KRY

CHARACTERx7 PASWRD
CHARACTERx8 DATE
CHARACTERx12 NAME,KEYS,DTEMP
INTEGER 1,J,NUMKEY

REAL BALNC, BTEMP, AMNT
OPEN(20,FILE="DATAC’)
READ(20, 10> DATE

READ(20,10) NAME

READ(20, 103 PASWRD
READ(20, 15) BALNC

FORMAT(A)

FORMAT(F8.2)

WRITE(*,*x) DATE,NAME, BALNC
BTEMP=BALNC

DTEMP=DATE

WRITE(*, %) ’ * DATE : ’

READ(x, 10) DATE
WRITE(x,%x) * *
READ(x, 10> KEYS
IF (KEYS .NE. NAME) THEN

NAME : ~’

WRITE(x,*x) ’ t! WRONG,PLEASE REENTER !!’

GOTO 20
ENDIF
WRITEC(Xx,%x) * *
READ(x, 10) KEYS
IF (KEYS .NE. PASWRD) THEN

PASSWORD : °’

WRITE(x,x) ~’ !t WRONG,PLEASE REENTER !!’

GOTO 30
ENDIF
WRITEC(x, %)
WRITE(x, x)
WRITE(x, x)
WRITE(x, x)
WRITE(x, %)
WRITE(x, %)
WRITE(Cx, %)
WRITE(Xx,%) °*

READ(%x,x) NUMKEY
READCx%x,15) AMNT

IF (NUMKEY> 100,200,300
BALNC=BALNC-AMNT

GOTO 400
BALNC=BALNC+AMNT
WRITE(%x,%x) *

WRITE(%, %)
WRITE(x, %)
WRITE(x%, x)
WRITE(x, x>
S8TopP

END

" % w %W v w e

. % ®w

* DATE OF LAST ENTER
* BALANCE

* OPTIONS :°

x RECORD OF ’,NAME,’ x’
DATE
BALANCE

kkkkkkkkkkkkk THANKS %k %k deskkkkkdkkkk’

' ,DTEMP
* , BALNC

()| : RECEIVE MONEY’
] .

DEPOSIT’

- O —

(
-->

: *,DATE
* ,BALNC

Office of Naval Research
Perceptual Science Program - Code 1142PS
Technical Reports Distribution List (4 pages)

QS

Dr. Earl Alluisi
Office of the Deputy

Under Secretary of Defense
OUSDRE (E&LS)

Pentagon, Room 3D129
Washington, D. C. 20301

REPARTMENT OF THE NAVY

Aircrew System Branch
System Engineering Test
Directorate

U.S. Naval Test Center
Patuxent River, MD 20670

Dr. Glen Allgaier

Artificial Intelligence Branch
Code 444

Naval Electronics Ocean System
Center

San Diego, CA 92152

Mr. Philip Andrews
Naval Sea System Command
Navsea 61R2
Washington, D. C. 20362

Mr. Norm Beck

Combat Control System Department

Code 221
Naval Underwater System Center
Newport, RI 02840

Dr. Lyle D. Broemeling
Code 1111SP

Qfflce of Naval Research
800 N. Quincy

Street Arlington, VA 22217-5000

LCDR R. Carter
Office of Chlef

on Naval Operations
OP-933D3
Washington D. C. 20350
Dr. L. Chnmura
Computer Sclence & Systems
Code 5592
Naval Research Laboratory
Washington, D. C. 20350

Dr. Stanley Collyer

Office of Naval Technology
Code 222

800 North Quincy Street
Arlington, VA 22217-5000

Commander

Naval Air System Command
Crew Station Design
NAVAIR 5313
Washinton, D. C. 20361
Dean of the Academic
Departments

U.S. Naval Acadenmy
Annapolis, MD 21402

Director

Technical Information
Division

Code 2627

Naval Research Laboratory

Washington, DC 20375-5000

Dr. Robert A.Fleming

Human Factors Support Group
Naval Personnel Research &
Development Center

141! South Fern Street
Arlington, VA 22217-5000

Dr. Sherman Gee

Command and Control
Technology (Code 221)

Office of Naval Technology

800 N. Quincy Street

Arlington, VA 22217-5000

Dr. Eugene E. Gloye

ONR Detachment

1030 East Green Street
Pasadena, CA 91106-2485

Mr. Jeff Grossman

Human Factors Laboratory
Code 71

Navy Personnel R&D Center
San Dlego, CA 92152-6800

Dr. Charles Holland
Offlce of Naval Research
Code 1133

800 N. Quincy Street
Arlington, VA 22217-5000

Huaman Factors Branch
Code 3152

Naval Weapons Center
China Lake, CA 93555

Human Factors Department
Code N-71

Naval Tralning System Center
Orlando, FL 32813

Human Factors Engineering
Code 441

Naval Ocean System Center
San Diego, CA 92152

CDR Thomas Jones

Code 125

Offlce of Naval Research
800 N. Quincy Street
Arlington, VA 22217-5000

Mr. Todd Jones
Naval Air System Command
Code APC-2050
Washlington, DC 20361-1205

Dr. Michael Letsky

Offlce of the Chief of Naval
Operations (OP-O1B7)
Washington, D. C. 20305

Lt Dennis McBride

Human Factors Branch
Paciflc Missle Test Center
Point Mugu, CA 93042

LCDR Thomas Mitchell

Code 55

Naval Postgraduate School
Monterey, CA 93940

Dr. George Moeller

Human Factors Department
Naval Submarine Medical
Research Lab

Naval Submarine Base
Groton, CT 06340-5900

CAPT W. Moroney

Naval Air Development
Center

Code 602

Warminster, PA 18974

Dr. A. F. Norclo

Computer Sclence & Systems
Code 5592

Naval Research Laboratory
Washington, D.C. 20301-5000

CDR James Offutt

Office of the Secretary of
Defense

Strategic Defense
Initiative Organization

Washlngton, D.C. 20301-5000

Perceptual Science Program
Office of Naval Research
Code 1142PS

800 N. Quincy Street
Arlinton, VA 22217-5000

Dr. Randall P. Schumaker

NRL A. I. Center

Code 7510

Naval Research Laboratory
Washington, DC 20375-5000

LCDR T. Singer

Human Factors Engineering
Division

Naval Ajir Development
Center

Wasminster, PA 18974

Dr. A. L. Slafkosky

Scientific Advisor

Commandant of the Marine Corps
Washington, D. C. 20380

Mr. James Smith

Code 121

Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217-5000

Special Assistant for Marine
Corps Matters

Code 0OMC

Office of Naval Research

800 N. Quincy Street

Arlington, VA 22217-5000

Mr. H. Talkington

Engineering & Computer Science
Code 09

Naval Ocean System Center

San Diego, CA 92152

QERARTMENT OF THE ARMY

Director, Organization and
Systems Research Laboratory
U.S5. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333-5600

Dr. Edgar M. Johnson
Technical Director

U.S. Army Research Institute
Alexandria, VA 22333-5600

Dr. Milton S. Katz
Director, Basic Research
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333-5600

Technical Director
U.S. Army Human Englineering
Laboratory

Aberdeen Proving Ground, MD 21005

REPARTMENT OF THE AIR FORCE

Mr. Charles Bates, Director
Human Engineering Division
USAF AMRL/HES
Wright-Patterson AFB

OH 45433

Dr. Kenneth R. Boff
AF AMRL/HE
Wright-patterson AFB
OH 45433

QTHER GOVERNMENT AGENCIES

Defense Technical
Information Center

Cameron Station, Bldg. 5

Alexandria, VA 22314

Dr. Clinton Kelly

Defense Advanced Research
Projects Agency

1400 Wilson Blvd.
Arlington, VA 22209

Dr. Alan Leshner

Division of Behavior and
Neural Science

National Science Foundation
1800 G. Street, N.W.
Washington, D.C. 20550

Dr. M. C. Montemerlo
Information Science &
Human Factors, Code RC
NASA HQS

Washington, D.C. 20546

.
Dr. Deborah Boehm-Davis

Department of Psychology
George Manson University

4400 Unlversity Drive
Fairfagz, VA 22030

Dr. Stanley Deutsch
NAS-Natlional Research Council
(COHF)

2101 Constitution Avenue, N.W.
Washington, D.C. 20418

Dr. Bruce Hamlll

The Johns Hopkins University
Applied Physlcs Lab

Laurel, MD 20707

Dr. James H. Howard, Jr.
Department of Psychology
Catholic University
Washington, D.C. 20064

Ms. Bonnie E. John
Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

Dr. Thomas G. Moher

Department of Electrical
Engineering & Computer Science
University of Illinois at Chicago

P.0. Box 4348

Chicago, IL 60680

Dr. Allen Newell

Department of Computer Science
Carnegie-Mellon Unlversity
Pittsburgh, PA 15213

Dr. Jesse Orlansky

Institute for Defense Analysis
1801 N. Beauregard Street
Alexandria, VA 22311

Dr.

Bolt Bernek & Newnman,

Richard Pew

10 Moulton Street
Cambridge, MA 02238

Dr.

William B. Rouse

Inc.

School of Industrlal and

System Engineering

Georgia Institute of
Technology

Atlanta, GA 30332

xx%x END OF LIST *x%xx

*
* X

3 copies needed
2 coples needed

